The Apron Library

Antoine Miné

CNRS, École normale supérieure

CEA Seminar
December the 10th, 2007
Outline

- Introduction
 - Main goals
 - Theoretical background
 - The APRON project

- The Apron Library
 - General description
 - Library API (data-types, abstract functions)
 - Abstract domain examples (intervals, octagons, polyhedra)
 - Linearization

- The Interproc Analyzer
 - Description
 - Demonstration
Introduction
Static Analysis

Goal : Static Analysis
Discover properties of a program *statically* and *automatically*.

Applications :

- compilation and optimisation, *e.g.* :
 - array bound check elimination
 - alias analysis

- verification and debugging, *e.g.* :
 - infer invariants
 - prove the absence of run-time errors
 (division by zero, overflow, invalid array access)
 - prove functional properties
Invariant Discovery Examples

Insertion Sort

\[
\text{for } i=1 \text{ to } 99 \text{ do }
\]

\[
p := T[i]; \ j := i+1;
\]

\[
\text{while } j \leq 100 \text{ and } T[j] < p \text{ do }
\]

\[
T[j-1] := T[j]; \ j := j+1;
\]

\[
\text{end; }
\]

\[
T[j-1] := p;
\]

\[
\text{end; }
\]
Invariant Discovery Examples

Interval analysis:

Insertion Sort

for i=1 to 99 do
 i ∈ [1,99]
 p := T[i]; j := i+1;
 i ∈ [1,99], j ∈ [2,100]
 while j <= 100 and T[j] < p do
 i ∈ [1,99], j ∈ [2,100]
 T[j-1] := T[j]; j := j+1;
 i ∈ [1,99], j ∈ [3,101]
 end;
 i ∈ [1,99], j ∈ [2,101]
 T[j-1] := p;
end;

⇒ there is no out of bound array access
Invariant Discovery Examples

Linear relation analysis:

Insertion Sort

```plaintext
for i=1 to 99 do
    i \in [1, 99]
    p := T[i]; j := i+1;
    i \in [1, 99], j = i + 1
    while j <= 100 and T[j] < p do
        i \in [1, 99], i + 1 \leq j \leq 100
        T[j-1] := T[j]; j := j+1;
        i \in [1, 99], i + 2 \leq j \leq 101
    end;
    i \in [1, 99], i + 1 \leq j \leq 101
    T[j-1] := p;
end;
```

\[\Rightarrow\] there is no out of bound array access
Abstract Interpretation: unifying theory of program semantics

Provide theoretical tools to design and compare static analyses that:

- always terminate
- are sound by construction (no behavior is omitted)
- are approximate (solve undecidability and efficiency issues)
Concrete Semantics:
most precise mathematical expression of the program behavior

Example: from program to equation system

```
x:= ?(0,10)  \to  1
\downarrow
X:=Y+10     \to  2
\downarrow
Y:=100      \to  3
\downarrow
X<0         \to  6
E\leftarrow

X:=X-1      \to  5
\downarrow
Y:=Y+10
```

Where:
- \mathcal{X}_i is a set of states, here $\mathcal{X}_i \in \mathcal{P}(\{X, Y\} \to \mathbb{Z}) = \mathcal{D}$
- $\{\cdot\}$ model the effect of tests and assignments
- the recursive system has a unique least solution (lfp)

\[
\begin{align*}
\mathcal{X}_2 &= \{X := ?(0, 10)\} (\mathcal{X}_1) \\
\mathcal{X}_3 &= \{Y := 100\} (\mathcal{X}_2) \cup \{Y := Y + 10\} (\mathcal{X}_5) \\
\mathcal{X}_4 &= \{X \geq 0\} (\mathcal{X}_3) \\
\mathcal{X}_5 &= \{X := X - 1\} (\mathcal{X}_4) \\
\mathcal{X}_6 &= \{X < 0\} (\mathcal{X}_3)
\end{align*}
\]
Abstract Domains

Undecidability Issues:
- the concrete domain \mathcal{D} is not computer-representable
- $\{ \cdot \}$ and \cup are not computable
- lfp is not computable

\implies we work in a abstract domain $\mathcal{D}^\#$ instead

Definition of an abstract domain:
- $\mathcal{D}^\#$: a set of computer-representable elements
- a partial order $\sqsubseteq^\#$ on $\mathcal{D}^\$
- $\gamma: \mathcal{D}^\# \rightarrow \mathcal{D}$, monotonic, gives a meaning to abstract elements
- $\{ \cdot \}^\#: \mathcal{D}^\# \rightarrow \mathcal{D}^\#$ and $\cup^\#: (\mathcal{D}^\#)^2 \rightarrow \mathcal{D}^\#$ are abstract sound counterparts to $\{ \cdot \}$ and \cup:
 \[
 \forall \mathcal{X} \in \mathcal{D}^\# \quad (\gamma \circ \{ \cdot \}^\#)(\mathcal{X}) \supseteq (\{ \cdot \} \circ \gamma)(\mathcal{X})
 \]
 \[
 \forall \mathcal{X}, \mathcal{Y} \in \mathcal{D}^\# \quad \gamma(\mathcal{X} \cup^\# \mathcal{Y}) \supseteq \gamma(\mathcal{X}) \cup \gamma(\mathcal{Y})
 \]
- $\triangledown: (\mathcal{D}^\#)^2 \rightarrow \mathcal{D}^\#$ abstracts \cup and enforces termination:
 \[
 \forall \mathcal{Y}_i \in \mathcal{D}^\#, \mathcal{X}_0 \overset{\text{def}}{=} \mathcal{Y}_0, \mathcal{X}_{i+1} \overset{\text{def}}{=} \mathcal{X}_i \triangledown \mathcal{Y}_{i+1} \text{ converges finitely}
 \]
Abstract Semantics

The concrete equation system is replaced with an abstract one:

\[\begin{align*}
X &:= \mathbb{N} (0, 10) \\
Y &:= 100 \\
X &:= X - 1 \\
Y &:= Y + 10
\end{align*}\]

A solution can be found in finite time by iterations:

1. Start from \(\mathcal{X}_1^0 \triangleq \top\), \(\mathcal{X}_k^0 \triangleq \bot\), \(\mathcal{X}_k^0 \neq 1 \triangleq \bot\).
2. Update all \(\mathcal{X}_k^i\) at each iteration: e.g., \(\mathcal{X}_4^{i+1} \triangleq \{X \geq 0\} \mathcal{X}_3^i\).
3. Use widening at loop heads: e.g.,

\[\mathcal{X}_3^{i+1} \triangleq \mathcal{X}_3^i \triangleright (\{Y := 100\} \mathcal{X}_2^i \cup \{Y := Y + 10\} \mathcal{X}_5^i)\]

It is a sound abstraction of the concrete semantics \(\mathcal{X}_i\).
Numerical Abstract Domains

Important case:

When \mathcal{D} abstract $D \overset{\text{def}}{=} \mathcal{P}(\text{Var} \rightarrow \mathbb{I})$ and

- Var is a finite set of variables
- \mathbb{I} is a numerical set, e.g., \mathbb{Z} or \mathbb{R}

Applications:

- discover numerical properties on program variables
- prove the absence of a large class of run-time errors (division by 0, overflow, out of bound array access, etc.)
- parametrize non-numerical analyses (pointer analysis, shape analysis)
Some Existing Numerical Abstract Domains

Intervals
\[X_i \in [a_i, b_i] \]
[Cousot-Cousot-76]

Simple Congruences
\[X_i \equiv a_i [b_i] \]
[Granger-89]

Linear Equalities
\[\sum_i \alpha_i X_i = \beta \]
[Karr-76]

Linear Congruences
\[\sum_i \alpha_i X_i \equiv \beta [\gamma] \]
[Granger-91]
Some Existing Numerical Abstract Domains (cont.)

- **Polyhedra**
 \[\sum_i \alpha_i X_i \geq \beta \]
 [Cousot-Halbwachs-78]

- **Octagons**
 \[\pm X_i \pm X_j \leq \beta \]
 [Miné-01]

- **Ellipsoids**
 \[\alpha X^2 + \beta Y^2 + \gamma XY \leq \delta \]
 [Feret-04]

- **Varieties**
 \[P(\vec{X}) = 0, P \in \mathbb{R}[\text{Var}] \]
 [Sankaranarayanan-Sipma-Manna-04]
Example: three abstractions of the same set of points

Worst-case time cost per operation wrt. number of variables:
- polyhedra: exponential
- octagons: cubic
- intervals: linear
The Apron Project

Apron = Analyse de programmes numériques

Action Concertée Incitative “Sécurité et Informatique” (ACI SI)

October 2004 – October 2007

Partners

- École des Mines (CRI), coordinator: François Irigoin
- Verimag (Synchrone team)
- IRISA (VERTECS project)
- École normale supérieure
- École Polytechnique
Project Goals

- **Theoretical side**

 Advance the research on numerical abstract domains.

- **Practical side**

 Design and implement a library providing:
 - ready-to-use numerical abstract domains under a common API easing the design of new analysers
 - a platform for integration and comparison of new domains
 - teaching, demonstration, dissemination tools

Steams from the fact that current implementations
- have incompatible API
- sometimes have very low-level API
- sometimes lack important features (transfer functions)
- often duplicate code
The Apron Library
Current Status of the Library

Available at: http://apron.cri.ensmp.fr/library/

- released under the LGPL licence
- 52 000 lines of C (v 0.9.8, not counting language bindings)
- main programmers: Bertrand Jeannet & Antoine Miné

Currently Available Domains

- polyhedra (NewPolka & PPL)
- linear equalities
- octagons
- intervals
- congruence equalities (PPL)
- reduced product of polyhedra and congruence equalities

Current Language Bindings: C, C++, OCaml

The implementation effort continues.
Implementation Choices

- **C** programming language for the kernel
- Domain-neutral API and concrete data-types
- Two-level API:
 - Level 0: abstracts $\mathbb{Z}^p \times \mathbb{R}^q$
 - Level 1: abstracts $(\text{Var}_{\mathbb{Z}} \to \mathbb{Z}) \times (\text{Var}_{\mathbb{R}} \to \mathbb{R})$
- Functional and imperative transfer functions
- Thread-safe
- Exception mechanism (API errors, out-of-memory, etc.)
- User-definable options (trade-off precision/cost)
- (Limited) object orientation (abstract data-types)
Implementation Choices

User-implementor contract:
- a domain must provide all sound transfer functions
- but the functions may be non-exact and non-optimal.

To add a new domain:
- only level 0 API to implement
- fallback functions provided
- ready-to-use convenience libraries
 - numbers (machine int, float, GMP, MPFR)
 - intervals
 - linearization
 - reduced product
- only a small core of functions actually needs to be implemented
API Types: Numbers

API Types:
concrete data-types used by the user to call the library
(\(\ne\) types used internally by domain implementations)

API types come with (scarce) support functions
(mainly constructors, destructors, printing)

- **Scalar** constants `ap_scalar_t`
 - arbitrary precision rationals (GMP)
 - IEEE doubles
 - \(+\infty, -\infty\)
 - (to come) arbitrary precision floats (MPFR)

- **Coefficients** `ap_coeff_t`
 - either a scalar
 - or an interval (with scalar bounds)

A coefficient represents a set of constant scalars
Level 0: “variables” are dimension indices, starting from 0 p dimensions in \mathbb{Z}, followed by q dimensions in \mathbb{R}

- **Affine expressions** `ap_linexpr0_t`
 - $\ell \overset{\text{def}}{=} c + \sum_i c_i X_i$
 - c and c_i are `ap_coeff_t` coefficients
 - either dense representation (array)
 - or sparse representation (ordered list of pairs (i, c_i))
 - functions to modify, resize, permute, etc.

- **Affine constraints** `ap_lincons0_t`
 - equality constraints: $\ell = 0$
 - inequality constraints: $\ell \geq 0$ or $\ell > 0$
 - disequality constraints: $\ell \neq 0$
 - congruence constraints: $\ell \equiv 0 [i]$

Non-scalar coefficients represent non-deterministic choices
$
\implies
$ we actually represent sets of expressions and constraints
Level 0 Expressions and Constraints

- **Expression trees** `ap_texpr0_t`
 - variable indices and coefficients at the leaves
 - operators include: `+`, `−`, `×`, `/`, `mod`, `√`
 - optional rounding to \(\mathbb{Z} \) or IEEE floats of various size
 - optional rounding direction to `+∞`, `−∞`, `0`, nearest, `?`
 - operations: variable substitution, dimension reordering, etc.

- **Constraints** `ap_tcons0_t`
 - equality constraints: `t = 0`
 - inequality constraints: `t ≥ 0` or `t > 0`
 - disequality constraints: `t ≠ 0`
 - congruence constraints: `t ≡ 0` [\(i \)]

As before, we actually represent expression and constraint sets.
Level 0 Generators and Arrays

- **Generators** `ap_generator0_t`
 - **vertices**: \(\{ \vec{v} \} \)
 - **lines**: \(\{ \lambda \vec{v} | \lambda \in \mathbb{R} \} \)
 - **rays**: \(\{ \lambda \vec{v} | \lambda \in \mathbb{R}, \lambda \geq 0 \} \)
 - **modular lines**: \(\{ \lambda \vec{v} | \lambda \in \mathbb{Z} \} \)
 - **modular rays**: \(\{ \lambda \vec{v} | \lambda \in \mathbb{N} \} \)

 where all coefficients in \(\vec{v} \) must be scalar.

- **Arrays** `ap_xxx_array_t`
 - hold a size and a pointer to a C array
 - simplify memory management (allocation, resize, free)
 - arrays for intervals, (affine) constraints, and generators
Level 1 Variables and Environments

Level 1 : uses variable names instead of indices.

- **Variable names** `ap_var_t`
 - generic type : `void*`
 - totally ordered, by user-definable compare function
 - user-definable memory management (copy, free)
 - default implementation : C strings

- **Environments** `ap_environment_t`
 - ordered variable list, with integer or real type
 - defines a mapping names→indices
 - addition, removal, renaming of variables
 - the library maintains the mapping for us
 - all level 1 types store an environment
 - environments are reference counted
 - the compatibility of environments is checked
Abstract Elements

Abstract elements ap_abstract0_t

Abstract data-type representing a set of points in $\mathbb{Z}^p \times \mathbb{R}^q$.

Operations include:

- construction: empty set, full set
- set-theoretic: \cup, \cap
- predicates: $=, \subseteq$, constraint saturation
- property extraction: expression and variable bounds, conversion to constraints, generators, or box
- transfer functions: constraint addition, (parallel) assignment or substitution, time elapse
- dimension manipulation: addition, removal, forget, permutation, expansion, and folding
- widening

All functions take a manager as argument.
Managers ap_manager_t

Class-like structure for abstract elements.

- each abstract domain library provides a manager factory
- holds pointers to actual functions (virtual dispatch)
- exposes user-definable parameters (e.g., precision control)
- exposes extra return values (e.g., exactness flag)
- provides static storage (thread-safety)
- provides dynamic typing
Precision

Operations can be non-exact and non-optimal.

- For predicates:
 - *true* means definitely *true*
 - *false* means *maybe* true, *maybe* false

- For property extractions:
 the returned constraints, generators, intervals may be *loose*.

- When returning an abstract element:
 the returned element may **not** be an exact / best abstraction.

Some possible causes of imprecision:
- **limited expressiveness** (abstract domain, constraints, etc.)
- *widening* (inherently imprecise)
- **not implemented** (no algorithm, or too inefficient)
- conversion between user and internal data-type
- the user asked for a fast, imprecise answer
Precision Control and Feedback

Precision Control

Per-function domain-specific algorithm slider in the manager:
- 0 : default precision
- MIN_INT...-1 : more efficiency at the cost of precision
- 1...MAX_INT : more precision at the cost of efficiency

Precision Feedback

Set in the manager after each function call:
- flag_exact (exact predicate, exact property, exact abstraction)
- flag_best (tightest property, best abstraction)
(if flag_exact_wanted, flag_best_wanted set by the user)

Fail-safe

- per-function user-definable timeout
- per-function user-definable maximum object size
Construction

Full and empty abstract elements

```c
ap_abstract0_t* ap_abstract0_top
  (ap_manager_t* man, size_t p, size_t q);

ap_abstract0_t* ap_abstract0_bottom
  (ap_manager_t* man, size_t p, size_t q);
```

Returns a newly allocated abstract element:

- `man` indicates the instance of the library used
- `p` is the number of integer dimensions
- `q` is the number of real dimensions
- `top` returns an abstraction of $\mathbb{Z}^p \times \mathbb{R}^q$
- `bottom` returns an abstraction of \emptyset

We keep track of which dimensions are integers.
The result of all transfer functions is intersected with $\mathbb{Z}^p \times \mathbb{R}^q$.
Set-Theoretic Binary Operations

Example: binary join

```
ap_abstract0_t* ap_abstract0_join
    (ap_manager_t* man, bool destructive,
ap_abstract0_t* a1, ap_abstract0_t* a2);
```

Computes r such that $\gamma(r) \supseteq \gamma(a1) \cup \gamma(a2)$

- **destructive** indicates an imperative version
 - if false, returns a newly allocated abstract element
 - if true, recycles the memory for $a1$

 $a2$ is always preserved

- **flag_exact** indicates whether $\gamma(r) = \gamma(a1) \cup \gamma(a2)$

- **flag_best** indicates whether
 $\gamma(r) = \min_{\subseteq} \{ \gamma(x) \mid x \in D^\#, \gamma(x) \supseteq \gamma(a1) \cup \gamma(a2) \}$

 `ap_abstract0_meet` is similar, but for \cap.
Set-Theoretic N-Aray Operations

Example: n-aray join

```c
ap_abstract0_t* ap_abstract0_join_array
  (ap_manager_t* man, ap_abstract0_t** tab, size_t size);
```

Returns a newly allocated abstract element r such that:

$$\gamma(r) \supseteq \bigcup_{0 \leq i < \text{size}} \gamma(\text{tab}[i])$$

`ap_abstract0_meet_array` is similar, but for \cap.

Note: why do we need _array versions?
- may be more efficient than several `ap_abstract0_join`
- different meaning for `flag_exact` and `flag_best`
Adding Constraints

Example: adding arbitrary constraints

```
ap_abstract0_t* ap_abstract0_meet_tcons_array
    (ap_manager_t* man, bool destructive,
     ap_abstract0_t* a, ap_tcons0_array_t* c);
```

Definitions

- semantics of a deterministic constraint: \[[c] : D \rightarrow \{ t, f \} \]
- each \(c[i] \) represents a set \(\beta(c[i]) \) of deterministic constraints

meet_tcons_array computes an abstract element \(r \) such that:

\[
\gamma(r) \supseteq \{ \vec{x} \in \gamma(a) | \forall i, \exists c \in \beta(c[i]), [c](\vec{x}) = true \} = \\
\bigcup_{\forall i, c_i \in \beta(c[i])} \{ \vec{x} \in \gamma(a) | \forall i, [c_i](\vec{x}) = true \}
\]

It models the semantics of tests.
Constraint Saturation

Example: testing an arbitrary constraint

```c
bool ap_abstract0_sat_tcons
(ap_manager_t* man, ap_abstract0_t* a, ap_tcons0_t* c);
```

Returns `true` if it can prove that:

\[\forall \vec{x} \in \gamma(a), \forall c \in \beta(c), \llbracket c \rrbracket(\vec{x}) = true \]

If it returns `false` then:

- if `flag_exact=true`, then
 \[\exists \vec{x} \in \gamma(a), \exists c \in \beta(c), \llbracket c \rrbracket(\vec{x}) = false \]
- otherwise, don’t know

Note: saturation of a constraint we just added may return `false`

- due to over-approximation
- or due to non-determinism
Assignments

Example: assigning an arbitrary expression

```c
ap_abstract0_t* ap_abstract0_assign_texpr
    (ap_manager_t* man, bool destructive,
     ap_abstract0_t* a, ap_dim_t dim,
     ap_texpr0_t* e, ap_abstract0_t* dst);
```

Semantics of an expression: $[[e]] : D \rightarrow P(\mathbb{R})$

assign_texpr computes an abstract element r such that:

$$\gamma(r) \supseteq \{ x[v_{\text{dim}} \mapsto v] \mid \vec{x} \in \gamma(a), \ v \in [[e]](\vec{x}) \} \cap \gamma(dst)$$

dst (optional) is used to refine the result according to some a priori knowledge of the result.

(often more precise in the abstract than calling meet afterwards)
Example: substituting an arbitrary expression

\[
\text{ap_abstract0_t* ap_abstract0_substitute_texpr} \\
(\text{ap_manager_t* man, bool destructive,} \\
\text{ap_abstract0_t* a, ap_dim_t dim,} \\
\text{ap_texpr0_t* e, ap_abstract0_t* dst});
\]

\text{substitute_texpr} computes an abstract element } r \text{ such that: }

\[\gamma(r) \supseteq \{ \vec{x} | \exists v \in \llbracket e \rrbracket(\vec{x}), \vec{x}[v_{dim} \mapsto v] \in \gamma(a) \} \cap \gamma(dst)\]

(intuitively, if } \gamma(a) \models c \text{ then } \gamma(r) \models c[v_{dim}/e])

It models the \textbf{backwards} semantics of assignments.
Parallel Assignments and Substitutions

Example: parallel assignment of arbitrary expressions

\[
\text{assign_texpr_array} \quad \text{ap_abstract0_t}\star \text{ap_abstract0_assign_texpr_array} \\
\quad (\text{ap_manager_t}\star \text{man}, \text{bool} \text{ destructive}, \\
\quad \text{ap_abstract0_t}\star \text{a}, \text{ap_dim_t}\star \text{dim}, \\
\quad \text{ap_texpr0_t}\star \text{e}, \text{size_t} \text{ size,} \\
\quad \text{ap_abstract0_t}\star \text{dst});
\]

assign_texpr_array computes an abstract element \(r \) such that:

\[
\gamma(r) \supseteq \{ \vec{x}[v_{\text{dim}[i]} \mapsto v_i] \mid \vec{x} \in \gamma(a), \forall i, v_i \in [e[i]](\vec{x}) \} \cap \gamma(dst)
\]

All assignments take place at the same time.

Could be emulated using assign_texpr at the cost of using temporary variables.
Expand and Fold

Expand and fold

\begin{verbatim}
ap_abstract0_t* ap_abstract0_expand
 (ap_manager_t* man, bool destructive,
 ap_abstract0_t* a, ap_dim_t dim, size_t n);
ap_abstract0_t* ap_abstract0_fold
 (ap_manager_t* man, bool destructive,
 ap_abstract0_t* a, ap_dim_t dim*, size_t n);
\end{verbatim}

expand adds \(n \) copies of \(v_{\text{dim}} \) to \(a \):

\[\gamma(r) \supseteq \{ (\vec{x}, v_1, \ldots, v_n) \mid \vec{x} \in \gamma(a), \forall i, \vec{x}[v_{\text{dim}} \mapsto v_i] \in \gamma(a) \} \]

fold merges \(n \) variables into \(v_{\text{dim}[0]} \):

\[\gamma(r) \supseteq \bigcup_{0 \leq i < n} \{ \text{proj}_i(\vec{x}) \mid \vec{x} \in \gamma(a) \} \]

where \(\text{proj}_i \) maps dimension \(\text{dim}[i] \) to \(\text{dim}[0] \) and projects out dimensions \(\text{dim}[k], k \neq i \).

Models arrays and weak updates [Gopan-DiMaio-Dor-Reps-Sagiv04].
The Interval Domain

Constraints of the form $v_i \in [a_i, b_i]$.
The Apron Library

The Interval Domain

Abstract representation:

Associate two bounds for each variable, can be:

- GMP rationals, enriched with $\pm \infty$, or
- IEEE double

Abstract transfer functions:

Uses interval arithmetics.
IEEE double bounds are rounded correctly.
The Polyhedron Domain

Constraints of the form $\sum_i \alpha_i v_i \geq \beta$.
Abstract representation:

We use the **double description** method:

- conjunction of affine **constraints** \(\bigwedge_j (\sum_i \alpha_{ij} v_i \geq \beta_j) \)
- sum of **generators**

\[
\left\{ \sum_i \lambda_i \vec{v}_i + \sum_j \mu_j \vec{r}_j \mid \lambda_i, \mu_j \geq 0, \sum_i \lambda_i = 1 \right\}
\]

where \(\alpha_{ij}, \beta_j, \vec{v}_i, \vec{r}_j \) are GMP rationals.

Optimization: equalities and lines are encoded specially.
Abstract transfer functions:

The main algorithm is the Chernikova–LeVerge algorithm:
- switches from one representation to the other
- minimizes both representations
- tests for emptiness

Most transfer functions are easy using the right representation:
- intersection (constraints), convex hull (generators)
- affine assignments, substitutions, constraint addition
- classical widening [Halbwachs-79]
- etc.

Optimization: equalities and lines use Gauss elimination.
Advanced features include:

- **strict constraints**
 (encoded through an extra slack variable)

- **approximation**
 rotate or remove constraints to reduce the size of coefficients
 (activated through algorithm)

- **integer tightening**
 tighten existing constraints involving integer variables
 (polynomial, non-complete algorithm)
 (activated through algorithm)

- **non-deterministic and non-linear transfer functions**
 expressions are linearized into \([a_0, b_0] + \sum_i c_i v_i\)
 which can be treated directly
Constraints of the form $\pm v_i \pm v_j \leq c$.
Abstract representation:

A set of constraints is represented as a square matrix:

- $m_{2i,2j}$ is an upper bound for $v_j - v_i$
- $m_{2i+1,2j}$ is an upper bound for $v_j + v_i$
- $m_{2i,2j+1}$ is an upper bound for $-v_j - v_i$
- $m_{2i+1,2j+1}$ is an upper bound for $-v_j + v_i$

Upper bounds may be encoded using either:

- GMP integers, enriched with $+\infty$
- GMP rationals, enriched with $+\infty$
- IEEE double or long double

Optimization: only the lower-left triangle is actually stored.
Abstract transfer functions:

The main algorithm is the Floyd-Warshall algorithm:

- shortest-path closure
- propagates and tightens all constraints
- tests for emptiness

Most transfer functions are then easy:

- intersection: point-wise min
- join: point-wise max on closed matrices
- assignments, substitutions of expressions of the form $\pm v_i + c$
- adding constraints of the form $\pm v_i \pm v_j \leq c$
- etc.
Advanced features include:

- **non-deterministic affine transfer functions**

 \[v_k \leftarrow [a_0, b_0] + \sum_i [a_i, b_i] v_i \]

 - extract bounds \([v_i^-, v_i^+]\) for each variable \(v_i\)
 - evaluate \([a_0, b_0] + \sum_i [a_i, b_i] \times [v_i^-, v_i^+]\) in interval arithmetics
 \(\implies\) new bounds for \(v_k\)
 - for each \(j \neq k, \epsilon = \pm 1\), evaluate
 \([a_0, b_0] + \sum_{i \neq j} [a_i, b_i] \times [v_i^-, v_i^+] + [a_j + \epsilon, b_j + \epsilon] \times [v_j^-, v_j^+]\)
 \(\implies\) new bounds for \(v_k + \epsilon v_j\)

 (polynomial algorithm, not best abstraction)

- **non-linear transfer functions**

 expressions are linearized into \([a_0, b_0] + \sum_i [a_i, b_i] v_i\)

 which can be treated as above.
Core Idea: abstract expressions

Replace e with e' such that: $\forall \vec{x} \in \gamma(a)$, $\llbracket e' \rrbracket(\vec{x}) \supseteq \llbracket e \rrbracket(\vec{x})$, then:

- $\{ v \leftarrow e' \}^\#(a)$ is a sound abstraction of $\{ v \leftarrow e \}(\gamma(a))$
- $\{ e' \geq 0 \}^\#(a)$ is a sound abstraction of $\{ e \geq 0 \}(\gamma(a))$
- etc.

We choose expressions of the form $e' \overset{\text{def}}{=} [a_0, b_0] + \sum_i [a_i, b_i]v_i$:

- affine expressions are easy to manipulate
- non-deterministic intervals offer abstraction opportunities
- such expressions can be swallowed by many domains:
 - the octagon domain
 - the polyhedron domain, after further abstraction into $[a_0, b_0] + \sum_i c_i v_i$
Linearization : Algorithm

Interval affine forms is enriched with the following algebra:
- point-wise interval addition and subtraction
- point-wise interval multiplication or division by an interval
- intervalization, i.e., evaluation into a single interval (requires bounds on all variables)

We proceed by structural induction on the expression [Miné-04] :
- real + and − map directly to affine form addition, subtraction
- real × and / first intervalize one argument
- real √ perform interval arithmetics on the intervalized argument
- rounding and casting introduce rounding errors by
 - enlarging variable coefficients with a relative error, and/or
 - adding absolute error intervals
The Interproc Analyzer
Interproc : showcase analyzer for Apron

- analyzer for a *toy* language
- infers numerical properties using Apron
- written in OCaml
- authors: Gaël Lalire, Mathias Argoud, and Bertrand Jeannet
- available under LGPL at http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forgue/interproc/index.html
- can also be used on-line
Support for:

- while loops and tests
- recursive procedures and functions
- integers and reals variables
- all operators from `ap_texpr0_t`, including float rounding

But:

- no arrays
- no dynamic memory allocation
- no I/O, except random
The program is converted into an equation system that is solved by a generic solver that implements:

- parametrization by the choice of an abstract domain
- increasing iterations with (delayed) widening
- decreasing iterations
- iteration ordering [Bourdoncle-93]
- guided analysis [Gopan-Reps-07]
- forward-backward combination
Demonstration

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi