The APRON Library

Bertrand Jeannet and Antoine Miné

INRIA, CNRS/ENS

CAV’09 conference
02/07/2009



Context : Static Analysis

What is it about ?
Discover properties of a program statically and automatically.

How : Abstract Interpretation
Theoretical tool to design and compare analyses that :
» always terminate
» are sound (no behavior is omitted)
» are approximate (solve undecidability and efficiency issues)

Applications

» compilation and optimisation
» e.g., alias analysis

» verification and debugging
» infer invariants
> prove properties



Program Analysis by Abstract Interpretation 1/3




Program Analysis by Abstract Interpretation 1/3

Collecting Semantics :
Collects reachable environments at each control point

entry 1 > Env = {x,y} — Z
x:=5 » Invariants X; € p(Env)

» Semantics of statements :
[stm] : p(Env) — p(Env)




Program Analysis by Abstract Interpretation 1/3

Collecting Semantics :
Collects reachable environments at each control point

entry 1 > Env = {x,y} — Z
x:=b » Invariants X; € p(Env)

» Semantics of statements :
[stm] : p(Env) — p(Env)
» Concrete equation system
Xi=Tp =Env
Xz = [[X = 5H(X1)
X3 = [y := 100](X2) U
[y := y + 10](Xs)
Xy =[x > 07](X3)
X5 = [[X =X - 1]](X4)
exit 6 X = [x < 07](X3)

The recursive system has a unique least solution (Ifp)




Program Analysis by Abstract Interpretation 1/3

Collecting Semantics :
Collects reachable environments at each control point

entry » Env = {x,y} — Z
» Invariants X; € p(Env)
in\l/z(r)i[a)nt » Semantics of statements :
0<x<5 [stm] : p(Env) — p(Env)
10x-+y » Concrete equation system
150 mod 10 X1 = Tp =Env
Xz = [[X = 5]](X1)
%<0 7 X; = [y := 100](Xz) U

[y :=y + 10](Xs)
Xy =[x > 07](X3)
X5 = [[X =X - 1]](X4)
exit 6 Xe = [x < 07](X3)

The recursive system has a unique least solution (Ifp)




Program Analysis by Abstract Interpretation 2/3

Undecidability Issues :

» D = p(Env) is not computer-representable
[-] and U are not computable

» Ifp is not computable



Program Analysis by Abstract Interpretation 2/3

Undecidability Issues :

» D = p(Env) is not computer-representable
[-] and U are not computable

» Ifp is not computable

Static approximation : Abstract Domain

» D : (simpler) set of computer-representable elements
» ~ : D} — D : gives a meaning to abstract elements

> [-]* and U* : sound abstract counterparts to [-] and U



Program Analysis by Abstract Interpretation 2/3

Undecidability Issues :

» D = p(Env) is not computer-representable
[-] and U are not computable

» Ifp is not computable

Static approximation : Abstract Domain

» D : (simpler) set of computer-representable elements
» ~ : D} — D : gives a meaning to abstract elements

> [-]* and U* : sound abstract counterparts to [-] and U

Dynamic approximation : Widening

» V will ensure termination of Ifp computation



Program Analysis by Abstract Interpretation 3/3

Solving the abstract equation system

entry 1
» Static approximation :
X} D [x := 5]4(x})
X§ 2F [y := 100*(X}) U*
[y := y + 10[%(X£)
X§ 2 [x > 07]4(xY)
XE O [x = x — 1J(X})
X¥ 2F [x < 07]¢(x{)
solved iteratively from initial states




Program Analysis by Abstract Interpretation 3/3

Solving the abstract equation system

entry 1
» Static approximation :
loop ng 23 = 5]]n():f)ﬂ #
oo X% Ot [y := 100]*(x}) U
Invariant 2 = g ”2) 4
[y :==y + 10]%(Xg)
0<x<s X} 2 [x > 07]¢(X)
10x+y=150 X2 D [x := x — 1]4(X})
x§ ¥ [x < 07[4(X})
x<07?

solved iteratively from initial states

» Dynamic approximation :
applying widening at loop heads




Typical Architecture of a Static Analyzer

Program Annotetd Prog.

N/

Front-end

‘|

Semantic Equations

/N

_ | Abstract
Solver | — )
Domain




Numerical Abstract Domains

Important case : numerical variables
D* abstracts p(Env) with Env = Var — @

Z or R
Applications

» Discover numerical properties on program variables
» Prove the absence of a large class of run-time errors

» Division by zero, overflow, out-of-bound array access
» Parametrize non-numerical analysis

» Pointer analysis, shape analysis



Some Existing Numerical Abstract Domains

Intervals Simple Congruences
X; € [ai, bi] Xi = aj [bi]
[Cousot-Cousot-76] [Granger-89]

Linear Equalities Linear Congruences

Z,’ aiXi=p0 Z,' o; Xi EIB[’Y]
[Karr-76] [Granger-91]



Some Existing Numerical Abstract Domains (cont.)

Polyhedra

YiaiXi > B
[Cousot-Halbwachs-78]

Ellipsoids
aX?+BY24+4XY <6
[Feret-04]

Octagons

+X; + X; <3
[Miné-01]

[

O

Varieties
P(X) =0, P € R[Var]
[Sankaranarayanan-Sipma-Manna-0-



Numerical Abstract Domains : Implementation

v

Representation of abstract elements
Logical/set opérations :

v

» conjunction (N#), disjunction (U¥)
» emptiness and inclusion test
» introduction/elimination of variables

Definition of a concrete semantics
» [expr] : D — p(N)
» [cond] : D — D
» [instr] : D — D
And its abstraction in D*
> [cond]® : D} — D¥
> [instr]# : D¥ — D¥
Widening, Projection, Property extraction, ...

v

v

v



Numerical Abstract Domains : Implementation

Some problems with most implementations

» Have low-level API
» e.g., former versions of OCTAGON and NEWPOLKA
libraries by ourselves. . .
» That are incompatible (and tight to the domain)
» e.g., NEWPoLKA and PPL, both implementing convex
polyhedra
» Sometimes lack important features

» e.g., POLYLIB developped by IRISA/Strasbourg
university, dedicated to automatic parallelisation of
programs

» Often duplicate code



The APRON Library

Goals of the APRON library

» Ready-to-use numerical abstract domains under a
common and high-level API

» Easing the design of new analysers
» Easing the comparison of domains

» A platform for integration of new domains
» Toolbox for domain implementors

» Teaching, demonstration, dissemination tools
» InterProc static analyzer



The APRON Library : Distinctive Features |

Domain-neutral APl and concrete data-types

» Supports the concrete semantics
(safely abstracted by abstract domain)

» Independent of the implementation of domains

Object orientation

» Abstract value = abstract data-type
» Effective underlying domain controlled by a manager

» Domain-dependent code located in manager allocation
» User options controlling the precision/efficiency tradeoff



The APRON Library : Distinctive Features |l

Example

ap_manager_t* man = oct_manager_alloc(...);

ap_abstractl_t val = ap_abstractl_top(man,env);
ap_abstractl_t val =

ap_abstractl_assign_linexpr(man,val,var,expr);



The APRON Library : Distinctive Features |lI

Support of non-linear, floating-point expressions
» E.g., assignement y := 2x%z + VYZ tr 400 €
» Full IEEE754 support (except NaN)

Two-level API

» Level O : abstracts (implementor level)

Core functionalities, Efficiency

> Level 1 : abstracts | Var — Z U R| (user level)

User convenience, Shared services




The APRON Library : Benefits

For domain users
» Higher-level API

» Variables ("x","y") replace dimensions (0,1)

» Abstract values typed by environments (["x" ;"y"])
» User-convenient functions

» Change of environment,.e.g. from ["x" ;"y"] to
["y";"z"], involving introduction & elimination of
variables (4 permutation of dimensions)

» Non-linear and floating-point expressions



The APRON Library : Benefits

For domain users
» Higher-level API

» Variables ("x","y") replace dimensions (0,1)

» Abstract values typed by environments (["x" ;"y"])
» User-convenient functions

» Change of environment,.e.g. from ["x" ;"y"] to
["y";"z"], involving introduction & elimination of
variables (4 permutation of dimensions)

» Non-linear and floating-point expressions
» Switching domain made easy
ap_manager_t* man = oct_manager_alloc(. L) =
= ppl_grid_manager_alloc(...)



The APRON Library : Benefits

For domain users
» Higher-level API

» Variables ("x","y") replace dimensions (0,1)

» Abstract values typed by environments (["x" ;"y"])
» User-convenient functions

» Change of environment,.e.g. from ["x" ;"y"] to
["y";"z"], involving introduction & elimination of
variables (4 permutation of dimensions)

» Non-linear and floating-point expressions
» Switching domain made easy
ap_manager_t* man = oct_manager_alloc(. L) =
. = ppl_grid_manager_alloc(...)
» Use of different domains at same time

» Uniform APl = easy
» Thread-safe == enables concurrent use



The APRON Library : Benefits (cont.)

For domain users
» Provides a set of reference implementations for 6 domains

1. Intervals [Cousot-Cousot-76] with BOX (Jeannet-Miné-07)
. Octagons [Miné-01] with OCTAGON [Miné-01]
3. Convex Polyhedra [Cousot-Halbwachs-78] with
» NEWPOLKA (Wilde-93, Halbwachs-94, Jeannet-00)
» PPL [...+ Bagnara & al - 02])
4. Linear equalities [Karr-76] with NEWPOLKA
5. Linear congruences [Granger-91]
with PPL [Bagnara & al - 05]
. Reducted product polyhedra/congruences
with NEwPoLkA 4+ PPL

N

(@)



The APRON Library : Benefits (cont.)

For domain implementors

» Only level 0 API to implement (core functionalities)

» Still some redundant functions (e.g. assignements)
» Kept for efficiency reasons in the API
» But fallback functions provided
» Ready-to-use convenience libraries
» Numbers (machine int, float, GMP, MPFR) and
interval arithmetic
» Linearization of non-linear expressions [Miné-04]
= Non-linear and floating-point expressions for free

» Reduced product, ...

== only a small core of functions to implement



The APRON Library : Structure

(" Underlying libraries
& abstract domains

v

- scalar & interval arithmetic
- linearization of expressions
- fall-back implementations

Abstraction toolbox

O

convex polyhedra

i

linear equalities

convex polyhedra

*

linear congruences

Data-types

Coefficients
Expressions
Constraints
Generators

Abs. values

box octagons

o
intervals octagons Developer interfacel
NewPolka PPL + Wrapper

Semantics : A L @(Z" X R™)
dimensions and space dimensionality

Variables and Environments
Semantics : A 5 @(V — Z WR)

|User interface|
C API

| OCaml binding || C++ binding |




The APRON Library : Distribution

http://apron.cri.ensmp.fr/library/
» Released under LGPL license
» 50 000 lines of C
» Current language bindings : C, C++, OCaml

Some perspectives

» Two innovative domains under developpment by external
teams (next talk describes one of them)

» BDDAPRON : combining

» finite datatypes using BDDs
(booleans, bounded integers, enumerated types)
» with numerical datatypes using APRON domains


http://apron.cri.ensmp.fr/library/

Typical Architecture of a Static Analyzer

Program Annotetd Prog.

N/

Front-end
(INTERPROC)

.

Semantic Equations

/\

Solver Abstract Domain
(FIXPOINT) D (APRON)




The INTERPROC analyzer

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

» A demonstration analyzer for a toy language
» Control : conditionals, while loops, recursive procedures
» Data : integer and real variables, full support of APRON
expressions

v

Infers numerical properties using APRON

» Choice by the user of the underlying abstract domain
» Exploited e.g. by InvGen tool [Rybalchenko & al - 09]

Simple (3000 LOC of OCaml)
» Thanks to APRON high-level API

Online WEB version available

v

v

Released under GPL license

v


http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

	Introduction
	Main Goals
	Program Analysis by Abstract Interpretation
	Numerical abstract domains

	The APRON library
	Motivation and distinctive features
	Implementation and distribution


